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Abstract 

Small and light-weight 9-axis sensor modules have been developed with the MEMS technology 

progresses. The Kalman filter is often used for the offline pose estimation by utilizing the measurement 

information after the 9-axis sensor modules measured human motion. The offline process, nevertheless, 

takes a while for the pose estimation. This study proposed a Kalman filter that allowed real-time pose 

estimation using a noise covariance matrix based on the 9-axis sensor module output. The proposed 

method result was generally consistent with the result obtained from the optical motion capture system. 
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1. Introduction 

Small and light-weight 9-axis sensor modules 

have been developed with the MEMS technology 

progresses. 9-axis sensor modules have been 

used for pose estimation in a wide range of fields 

such as medical welfare, sports, and 

entertainment [1]. The Kalman filter is often used 

for pose estimation using 9-axis sensor modules 

because of its low computational load and 

excellent noise resistance [2]. However, it is not 

easy to determine the noise covariance in the 

Kalman filter by accurately detecting the 

dynamic characteristic of the measurement 

target and the noise characteristics of a 9-axis 

sensor module. The Kalman filter is often used 

for the offline pose estimation by utilizing the 

measurement information after the 9-axis sensor 

modules measured human motion. The offline 

process, nevertheless, takes a while for the pose 

estimation. Applying the Kalman filter for the 

real-time pose estimation in clinical practice 

requires determining the noise covariance in 

real-time to increase the estimation accuracy. 

Therefore, in this study, we constructed a 

Kalman filter that could be used for accurate pose 

estimation in real time utilizing the noise 

covariance matrix based on the 9-axis sensor 

module outputs. The pitch angle estimation was 

performed in this study, as the first step of real 

time 3D pose estimation.  

                     

2. Method  

2.1 Initial pitch angle 

The initial pitch angle was calculated from Eq. 

(1) using the acceleration sensor output at rest [3]. 
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where 𝐴𝑥 , 𝐴𝑦  and 𝐴𝑧  are the accelerometer 

output for x, y, and z axes, respectively 

 

2.2 Kalman filter algorithm using noise 

covariance based on sensor output 

A linear Kalman filter for pitch angle 

estimation was constructed. The state and 

observation equations are shown in Eqs. (2) and 

(3), respectively. 
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where 𝑥𝑡 is the pitch angle, ut is the gyro sensor 

output, wt is the process noise, vt is the 

observation noise, and A=B=C=1. Then, the 

prediction step (Eqs. (4) and (5)) and the filtering 

step (Eqs. (6), (7), and (8)) were calculated using 



 

the linear discrete-time system represented by 

Eqs. (2) and (3). 
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where P represents the error covariance matrix, 

K denotes the Kalman gain, and Q and R 

respectively denote the covariance matrices of 

the process noise and observation noise. Q and R 

are based on the gyro sensor output and 

accelerometer output, respectively, as shown in 

Eqs. (9) and (10). 
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where 𝜔𝑥,𝑡  , 𝜔𝑦,𝑡  , 𝜔𝑧,𝑡  respectively stand for the 

gyroscope output for x, y and z axes. 𝐴𝑦 and 𝐴𝑧 

respectively express the accelerometer outputs 

for the y and z axes. 

 

3. Experiment 

The 9-axis sensor module used in this study 

(BMX055 from Bosch) includes a three-axis gyro 

sensor, a three-axis acceleration sensor, and a 

three-axis geomagnetic sensor. The experiments 

were conducted with the measurement range of 

±2 G for the acceleration sensor and ±1000 

degree/sec for the gyro sensor. The size of the 

sensor is 14 x 10 x 5 mm and the weights 5 g. The 

microcontroller board used in the experiment 

was STM32F401RE. Measurement data 

acquisition and setting for the 9-axis sensor 

module was performed through I2C 

communication. The maximum communication 

speed of the I2C communication was set to 400 

kbps. The 9-axis sensor module was attached to 

a two-link mechanism controlled by a 

servomotor. The mechanism moved in a range of 

90 degrees from the initial posture of 0 degree. 

4. Result 

The results are shown in Fig. 1. The horizontal 

axis is the normalized time from starting the 

operation of the robot to the end of that as 100%.  

Fig.1. Measurement results 

 

The vertical axes are the pitch angle results. The 

black solid line represents the result obtained 

from the optical motion capture system, which is 

used as the true value in the experiment. The red 

solid line represents the result obtained from the 

Kalman filter using the proposed method. The 

blue solid line shows the result from the Kalman 

filter, which used the constant process and 

observation noise covariances. The constant 

process and observation noise covariances were 

determined to maximize the log-likelihood using 

100 sample data before the measurement. The 

proposed method result is generally consistent 

with the result obtained from the optical motion 

capture system. On one hand, the result using the 

constant process and observation noise 

covariances show a time-delay result. 

 

5. Conclusion 

The proposed method could estimate the pitch 

angle in real time utilizing the noise covariance 

matrix based on the 9-axis sensor module 

outputs. The method is expected to be useful for 

estimating motion in sports and healthcare 

applications. 
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